
The role of semantics in e-government service model verification and

evolution

L. Stojanovic
(1)

, A. Abecker
(1)

, D. Apostolou
(3)

, G. Mentzas
(2)

, R. Studer
(1)

(1)

FZI, Research Center for Information Technologies at the University of Karlsruhe, Germany
(2) National Technical University of Athens, Greece

(3) University of Pireaus, Greece
Abstract

e-government systems are subject to a continual change.
The importance of better change management is nowadays
more important due to the evolution of Europe towards a
multicultural, more open and international society with
changing common values, increasing levels of education,
demographic involvement and adoption of new
technologies. In this paper we show how semantic
technologies may improve change management. The novelty
of the approach lies in the formal verification of the service
description as well as in the using of formal methods for
achieving consistency when a problem is discovered.

Introduction

An important characteristic of today’s business systems is
their ability to adapt themselves efficiently to the changes
in their environment, as well as to the changes in their
internal structures and processes. The continual
reengineering of a business system, i.e. the need to be
better and better, is becoming a prerequisite for surviving
in the highly changing business world. Although changes
encompass several dimensions of a business system (e.g.
people, processes, technologies), most of them are reflected
on its IT infrastructure. For example, the establishment of a
new department in the organizational structure will require
the corresponding changes in the business processes,
enterprise portal, underlying groupware system, skill
management system, etc. Therefore, the adaptability of the
implemented IT solutions directly defines the efficiency of
a business system.
However, building and maintaining long-living applications
that will be “open for changes” is still a challenge. Change
management in general refers to the task of managing
change, which means making of changes in a planned and
systematic fashion (Nickols, 2003). The aim is to more
effectively resolve changes in an ongoing organization.
Change management is especially important for the
applications that are distributed over different systems. Due
to our tasks in an ongoing project1, in this paper we treat
change management problem in e-government systems.
Indeed, e-government systems (e.g. portals) are typical
examples of distributed applications. They enable

Copyright © 2006, American Association for Artificial Intelligence
 (www.aaai.org). All rights reserved.
1 OntoGov - http://www.ontogov.org

integration of various, physically distributed services
differing in the level of formality and the structure.
The changes to be managed lie within and are controlled by
the public administrations. The most frequent changes are
the changes of existing business processes based on the
adaptation of the business goals, organisational structure or
due to possibility to organise processes in a better way. For
example, public administrations at the government level or
at the federal level work on supporting unification of e-
government services, on standards for data exchange as
well as on providing examples of the process models of
public services that are implemented by municipalities.
Moreover, the internal changes might have been triggered
by events originating outside the public administration, i.e.
by “the environment.” Hence, the change management must
take into account the response to changes over which the
public administration exercises little or no control (e.g.,
legislation, social and political upheaval, the actions of
competitors, shifting economic tides and currents, and so
on). On the other hand, in a dynamically changing political
and economical environment, the regulations themselves
have to be continually improved, in order to enable the
efficient functioning of a modern society. Taking into
account an enormous number of public services and
dependencies between them, as well as the complexity of
interpreting and implementing changes in government
regulations, the process of reconfiguring the existing public
services seems to be quite complex. It is necessary to
provide support for propagating changes to all dependent
artefacts2 by ensuring the consistency of the whole system.
Otherwise, the reliability, accuracy and effectiveness of the
e-government system decrease significantly.
Although the importance of change management is
demonstrated in the practice (Hardless, et al. 2000), as
known to the authors the corresponding methods and tools
are still missing. However, since the demands for change-
aware e-government are much higher (Stojanovic, et al.
2006), in this paper we propose an approach that enables
agile response to frequent and huge changes in the
environment or in the system itself.
The novelty of the approach lies in the formal verification
of the service description as well as in the using formal

2 For example, the e-government service for birthday certificate can be
treated as a separate service or as a composite service in the context on
other services such as passport issuance. The addition of a new input in
the birthday certificate service requires the changes in the data-flow of
many of services that include it (e.g. the passport issuance service) in
order to achieve one-step e-government.

methods for achieving consistency when a problem is
discovered. The verification is driven by a set of desirable
properties including such as standard set of properties as
well as domain-specific constraints (e.g. all activities are
ground on some law or regulation). While performing the
checks, the system generates specific suggestions on how to
fix errors based on the type of errors and the situation at
hand. Even though it is very desirable to identify errors and
to resolve them in an early state of the service modelling,
there are no tools that provide such means.
This paper is organized as follows: The set of ontologies
used for describing e-government services is discussed in
section 2. Change management process is introduced in
section 3. The change preservation phase of this process
that enables verification of a service description and
generation of recommendations to fix problems founded in
the description is elaborated in section 4. The
implementation details are given in section 5. In section 6,
an overview of related work is presented, while in section 7
we present the main conclusions of this work.

OntoGov Model

Before starting with the description of our approach for the
change management, here we briefly describe the set of
ontologies used for modelling e-government services. This
set represents the Ontogov model. Dependencies between
OntoGov ontologies are shown in Figure 1. They are called
Meta ontologies, since they define the schema i.e. the
language for modelling the e-government services.

Legal

Ontology

Organisational

Ontology

Lifecycle
Ontology

Domain
Ontology

OntoGov Process

Ontology

OntoGovProfile
Ontology

Life-Event

Ontology

OntoGov

Meta Ontologies

inclusionIncluded

ontology

Including

ontology

Figure 1. The OntoGov model

The OntoGov model consists of two major parts – the
OntoGov Profile ontology and the OntoGov Process
ontology, which are developed based on the OWL-S3
ontologies. However, both of them are extended / adapted
in order to take into account unique characteristics of the e-
government services as well as some aspects needed for the
better management of changes.
For example, since a profile in generally is used for
advertising and discovering of e-government services, a
typical profile of an e-government service contains the
information such as name, short description, version, status,
date of creation, creator, etc. Additionally, the OntoGov
Profile ontology includes the Life-Event ontology that is

3 http://www.daml.org/services/owl-s/1.0/

used for the classification of the e-government services. A
part of this ontology is shown in Figure 2.

Figure 2. A part of the Life-Event ontology

The Life-Event ontology includes concepts such as
residential affairs, residential permissions, identification
certifications, naturalization citizenship, moving, education
etc. It has been developed based on the existing standards
for modelling lifeevents such as the Swiss Standard eCH-
0014 that aims to give an overview over all relevant e-
government services in Switzerland and therefore to
provide a consistent and standardized classification of the
services. The inventory comprises 1.200 e-government
services that are all services initialized by a citizen or
internal administration processes. It is important to note
that the Life-Event ontology is common for all the users
even though they are often geographically distributed and
experience significant problems in common communication
language (e.g. English) and in the style of the
communication. The lexical layer5 of the Life-Event
ontology enables to deal with different languages.
The OntoGov Process ontology models (i) process flow
using activities (which can be either atomic or composite)
and control constructs (e.g. sequence, split, join, switch,
etc.) and (ii) data flow through inputs, outputs and
equivalence relationship between them. Input and output
of an activity are represented using entities defined in the
Domain ontology. The Domain ontology shown in Figure
3 encodes concepts of the public administration domain
such as the “terminology” used in the e-government
domain. Every public administration should keep its
autonomy in describing its own domain. For example, the
Domain ontology defines the type and structure of
documents such as certificate.
Moreover, for each activity a set of metadata may be
defined that includes name, description, preconditions, and

4 Best Practice Structure Process Inventory - http://www.ech.ch
5 The lexical layer of an ontology models various lexical properties of
ontology entities, such as labels, synonyms, stems etc.

postconditions. This standard set of metadata is extended
with the legal, organizational and lifecycle aspects defined
in the corresponding ontologies. All these ontologies are
used for the annotation of the e-government services in
order to enable better and easier management of them.

Figure 3. A part of the Domain ontology

For example, while in private organizations the decisions
for process definitions are mainly based on time, cost and
quality criteria, government processes must be in
accordance with the existing law and regulations from
different levels (state, region, and municipality). Therefore,
we have developed the Legal ontology that models the
structure of the legal documents, which includes
paragraphs, sections, amendments, etc. It is very important
to document the laws and regulations the process is based
upon – not only for the whole process but also for specific
activities, since the legislation regulates the
accomplishments of the administrative services. By
associating legislation to these services, it is possible to
trace and propagate the effects that a change in the
legislation (or administrative regulations) produces on the
models of the administrative services.
To develop the Legal ontology that is shown in Figure 4 we
have analyzed the structure of legal documents in
Switzerland, Greece and Spain, since the goal of the
OntoGov project is to pilot the system at three partners
coming from these countries. We concluded that the legal
documents have very similar structure independently of the
country they are defined for. Even though different
countries use different terminology to organize their legal
documents, all of them use three levels of abstractions.
Therefore, it was possible to extract the general structure of
a law and to represent it in a form of the Legal ontology.
The Organisational ontology shown in Figure 5 describes
the roles and areas of responsibility and capabilities within
an organisation with respect to the activities of a process
model. Moreover, it models the structure of an
organisation, its resources, know-how, etc. For example,
we distinguish two types of resources: (1) human resources
who perform an activity and (2) equipment (i.e. hardware,
software etc.) that is occupied by the activity. Note that
equipment is needed to perform an activity. However, it is
released after finishing this activity.

Figure 4. A part of the Legal ontology

Figure 5. A part of the Organisational ontology

Finally, the OntoGov Process ontology includes the
Lifecycle ontology that describes the decision-making
process in the public administration. A part of this ontology
is shown in Figure 6. It bridges the gap between decision
making and realisation by providing means for describing
these decisions and formally stating reasons that motivate
the design decisions. Indeed, it is intended to support the
transition from knowledge acquisition to implementation. It
provides answers on the following questions: (i) “How
have the process design (e.g. regarding atomic activities)
and flow (e.g. regarding control constructs) been realized?”
and (ii) “Why has a design decision been taken?”.
Since it includes entities for documenting design decisions
and the underlying rationale, it gives concrete clues on how
the corresponding e-government service has to be
modified. During ongoing development, it helps the public
administrators to avoid pursuing unpromising design
alternatives repeatedly, but it also facilitates maintenance
by improving the understandability of the service design. A
description of the design process also supports traceability,
since it links parts of the service design to the portions of
the specification they were derived from and to the
requirements that influenced design decisions. In this way
we build model that supports not only the specification and
design of e-government processes, but more important it
provides an automated, transparent, and user centered

support to the entire process lifecycle, from analysis to
execution, by suggesting solutions that can be adopted,
refused, or refined by public administrators.

Figure 6. A part of the LifeCycle ontology

All the previously mentioned ontologies represent the
OntoGov model. In order to model concrete e-government
services and all data relevant for these services we have
developed the Domain-oriented ontologies. Therefore, this
cluster includes a set of ontologies that are structured in
accordance with the specific domain, e.g., pilot. These
ontologies are “specialization”6 of ontologies belonging to
the cluster of Meta Ontologies or other domain-oriented
ontologies.
For example, at the government level we may define the
Legal-Federal ontology based on the Legal ontology that
belongs to the OntoGov model. It contains the entities
representing the laws that hold at federal level. Each
federal state has its own laws. Therefore, the Legal-State
ontology may be a specialization of the Legal-Federal
ontology (since a state must satisfy all federal laws) by
extending it with the knowledge related to the federal state
laws. Further, each municipality may create its Legal-
Municipality ontology that extends the Legal-State
ontology with some regulations. This example is shown in
Figure 7. We note that there is no constraints regarding the
depth of the specialization. However, our approach is
currently limited to including entire models rather than
including subsets. Also, when a model is reused,
information can only be added, and not retracted.
The main ontology in the cluster of domain-oriented
ontologies is the so-called Service ontology. Each e-
government service is represented by one Service ontology.
A Service ontology is an instantiation of the OntoGov
Profile Ontology and it contains specializations of all
ontologies included in the OntoGov Profile Ontology.
We note that the “specializations” of the Legal,
Organizational and Domain ontologies may be shared
between several Service ontologies. It means that for each

6 An ontology OS is defined as a specialization of an ontology O if it
includes the ontology O and extends its entities either at the conceptual
level (e.g. by defining the specialization of a concept) or at the instance
level (e.g. by instantiating a particular concept). We treat the term
ontology specialization as a synonym for term ontology reuse or ontology
modularization.

particular governmental institution the domain experts have
to define their own specialization of the Legal,
Organizational and Domain ontologies by taking into
account the specificities of this public administration.
Moreover, they have to reuse as much as possible of
already existing knowledge. For example, to define their
own ontology for legal aspects they should reuse the
ontology representing the law at the state level (or at least
at the federal level) and not to start directly from the Legal
ontology. This will speed up the ontology development
process and will increase the interoperability.

Legal
ontology

Legal-Federal
ontology

Legal-State
ontology

Legal-Municipality
ontology

Meta Ontologies

Domain-oriented
Ontologies

Figure 7. Specialisation of the legal ontologies

On the other hand, the specializations of the Lifecycle,
Process and Profile ontologies are specific for each
concrete service. This specialization is done by creating
instances and property instances of corresponding concepts
defined in some of the included ontologies. It means that
for each e-government service we have exactly one
specialization of these three ontologies, since each e-
government service has its own profile, process model as
well as life-cycle. We note that a Service ontology may
include other Service ontologies.

An example of modelling e-government services

An example of the process part of the e-government service
“Announcement of moving”, modelled by using the
OntoGov model, is shown in Figure 8. This service is
classified as of high potential for European e-government
improvement, as it is typically involving various public and
private institutions. Today, the service is split into few
separated tasks. In the case that a citizen invokes this
service from a web portal, she is asked to provide all
information needed to perform the complete service (cf.
“EnterApplicationForm” in Figure 8). After submitting the
requested information, the eligibility is checked (cf.
“CheckEligibility”). Based on the result, the service can be
either broken (cf. “RejectApplication”) or continued. The
next step depends on whether she is already registered (cf.
“Deregistration”) or not (cf. “Registration”).
Deregistration has to be performed in one municipality. In
addition, the person has to register himself/herself in the
new municipality. In the meantime several private or semi-
private entities, like telecommunication companies or the
electricity company, have to be notified about the change

of the address (cf. “GetThirdPatiesAddress” and
“NotifyThirdParties”). Finally, the citizen has to be
informed about the result of the service. By describing the
e-government service “Announcement of moving” in this
way the quality of the service is improved, since it is
performed by the citizen as one task regardless what and
how much (technical) processes run behind.
Moreover, not only knowledge on how to execute the
service is stored but also why it was designed as it is.
Therefore for every entity in the process model of a service
(i.e. either an activity or a control construct), information
on the underlying design decisions is stored. An example of
the design decision that is defined for the activity
“CheckEligibility” is shown in Figure 8. This decision is
legally grounded: the information that public administrators
need to know regarding this activity is defined by law (cf.
SR 101 and SR 201 Art. 22A-26A).
Additionally, a decision may stem from technical reasons
or organizational reasons. In the case that a reason
changed, this information is used to propagate the change
to the affected service(s).

Change Management Process

Change management is the timely adaptation of a system to
the changes in business requirements, users’ needs, etc. as
well as the consistent propagation of these changes to
dependent artefacts (Nickols, 2003). A modification in one
part of the system may generate many inconsistencies in
other parts of the same system (Stojanovic, 2004). This
variety of causes and consequences of the changes makes
the change management a very complex operation that
should be considered as both an organizational and a
technical process (Stojanovic, Stojanovic, 2004).
Existing approaches for change management in e-
government focus mainly on manual managing of a
particular, isolated service and on supporting only
message-based communication between public
administrators. It means that public administrators can
exchange raw information, but not semantically more
complex structures, like decisions, since e.g. they are
missing a commonly agreed description of problems.

Domain InformationDomain Information

Domain InformationDomain Information

Domain InformationDomain Information

Domain InformationDomain Information

Domain InformationDomain Information

Lifecycle aspects

Design Decision 1:

Eligibility handling

Reason I:
Citizen must have Swiss domicile

in order to perform automatic

registration/deregistration

Related Instance(s):

SR 101

SR 210 Art. 22A – 26A

Legal aspects

Organisational aspects

Domain InformationDomain Information

Domain aspects

Domain InformationDomain Information

Figure 8. “Announcement of moving” e-government service modelled using the OntoGov model

Moreover, the existing approaches require a growing
number of highly skilled personnel, making the
maintenance costly. Finally, the changes that affect the
system are resolved and propagated in an ad-hoc manner.
However, the ad hoc management of changes might work
only for particular cases. It can scale neither in space nor in
time. Therefore, in order to avoid unnecessary complexity
and failures in the long run, change management must be
treated in a more systematic way.
Our approach for Change Management enables consistent
propagation of changes within a service and between the
services in order to ensure the quality of the decision
making process. Since the services are represented as a set
of metadata (instances) related to an ontology, each step in
resolving changes can be formalized and automatically
performed. We define a four-phase change management
process as shown in Figure 9. The process starts with
representing a request for a change formally and explicitly.
Then, the change preservation prevents inconsistencies by
computing additional changes that guarantee the transition
of the model into another consistent state. During the
change implementation phase, required and derived
changes are applied to the system in a transactional
manner. In the change propagation phase all dependent
knowledge items are found and updated.

Figure 9. Four phases of the change management process

In the rest of this section we describe this four phases
briefly. The detailed description of the change preservation
phase is given in next section.

Change representation

The OWL ontology language represents the standard for
representing ontologies on the Web and it is used as the
representation language of OntoGov ontologies. Each
entity of the OWL ontology model represents one logical
axiom. Therefore, a complete set of changes determined by
the OWL ontology language includes only two changes:
“AddAxiom” and “RemoveAxiom”. However, this
granularity of the ontology changes is not always
appropriate. For example, to make the service s1 a
predecessor of the service s2, the public administrator needs
to apply a list of ontology changes that includes creating a
sequence between s1 and s2 and connecting outputs of s1
to the corresponding inputs of s2.
Therefore, public administrators require a method for
expressing their needs for changes in an exacter, easier and
more declarative manner. For them, it would be more
useful to know that they can connect two services, rather
than to know how it is realized. The full set of changes for
the OntoGov model is defined in (Stojanovic, at al., 2006).
These changes correspond to the “conceptual” operation
that someone wants to apply without understanding the

details (i.e. a set of ontology changes) that the change
management system has to perform.

Change preservation

Changes are forces that drive the evolution. They can be
applied to a consistent description of an e-government
service, and after all the changes are performed, the
description must pass into another consistent state.
Therefore, when updating a service description, it is not
enough just to consider the entities figuring in the request
for a change, because the other entities in the same
description may also be affected by the updates. Since it is
not sufficient to change only a part of the description that is
related to the request for a change while keeping all the
other entities intact, we introduce the change preservation
phase. Its task is to enable the resolution of changes in a
systematic manner by ensuring the consistency (Haase,
Stojanovic, 2005) of the whole description of an e-
government service. This is elaborated in next section.

Change implementation

The role of the change implementation phase is (i) to
inform a public administrator about all consequences of a
change request, (ii) to apply all the (required and derived)
changes and (iii) to keep track of performed changes.
Notification
In order to avoid performing undesired changes, before
applying a change to a service description, a list of all
implications to the service description should be generated
and presented to a public administrator who modifies the
service description. Only if the public administrator is
informed about all the changes that are going to be
performed on a request, she can make strategy decisions
posed by the system. The public administrator should
however have possibilities to make such choices or even to
abort the entire modification when she realizes that it
would have undesired consequences for other parts of the
service description. Consequently, she should be able to
comprehend a list of all the changes and approve or cancel
them. When the changes are approved, they are performed
by successively resolving changes from the list. If changes
are cancelled, the service description remains intact.
Change application
In order to give a public administrator a chance to cancel a
change after it has been completely analyzed, it is
necessary to separate the analysis7 of the user’s request for
the change from the final execution of this request within
the change management system. Therefore, the main task of
the change implementation phase is the application of
changes. During this phase all changes (i.e. required and
derived changes) are applied to a consistent service

7 The analysis of a change covers the change preservation and the change
propagation phases, where the change is extended with the additional
changes that ensure the consistency.

Preservation PropagationRepresentation Implementation

Change management process

description and result into a new consistent service
description.
Indeed, one of the main advantages of our change
management process is the separation of the phases where
requests are analyzed from the final execution of the
changes. This separation was naturally driven by the need
for the transaction8. Only after a successful commitment of
the hypothetical “reasoning” performed by the change
preservation, the changes in effect took place on the service
description itself. Once acknowledged by the public
administrator for the implementation, all the changes are
considered as an atomic “transaction” (i.e. they act like a
transaction), although they are executed step by step.

Change Logging
The next task of the change implementation is to keep track
about the performed changes. Information about changes
can be represented in many different ways. To
communicate about changes, we need a common
understanding of a change model and of a log model.
Therefore, we introduce the service evolution ontology and
the service evolution log (Stojanovic, 2004). The service
evolution ontology is a model of ontology changes enabling
better management of these changes. The service evolution
log tracks the history of applied changes as an ordered
sequence of information (defined through the service
evolution ontology) about a particular change.
Moreover, the change reversibility is also supported. It
enables undoing and redoing changes made in an ontology-
based description of the e-government service.
Consequently, changes can be executed in reverse order
thus forcing the service description to return to the
conditions prior to the change execution. It is important to
note that reversibility means undoing all effects of some
change, which may not be the same as simply requesting an
inverse change manually. For example, if an atomic service
is deleted from a process model, its metadata and links will
need to be deleted as well. Reversing such a change is not
equal to recreating the deleted atomic service – one needs,
also, to revert the metadata and the links into the original
state.

Change propagation

The basic requirement for a management system is that it
has to be simple, correct and usable for public
administrators. Note that they are responsible for keeping
semantic description of services up-to-date and don’t need
to be experienced ontology engineers. Thus, a management
system must provide capabilities for the automatic
identification of problems in the semantic description of e-
government services and ranking them according to the
importance. When such problems arise, a management
system must assist the public administrators in identifying
the sources of the problem, in analysing and defining

8 A transaction represents a sequence of actions that is treated as a unit
for the purposes of satisfying a request. For a transaction to be completed,
it has to be accomplished in its entirety.

solutions for resolving them. Finally, the system should
help in determining the ways for applying the proposed
solutions.
The role of a change management system is much more
than finding inconsistencies in a description and alerting a
domain expert about them. This is pretty much the kind of
support provided by conventional compilers. However,
helping public administrators notice the inconsistencies
only partially addresses this issue. Ideally, a change
management system should be able to support domain
experts in resolving the problems at least by making
suggestions how to do that. The following procedure has
been realized:
- Checking actuality of the associated Ontologies – Since
each ontology has a version number associated with it that
is incremented each time the ontology is changed, checking
the equivalence of the original of the included ontology and
the replica can be done by a simple comparison of the
version numbers.
- Extracting Deltas – After determining that the included
ontology needs to be updated, the evolution log for this
ontology is accessed. The extracted deltas contain all
changes that have been applied to the original after the last
synchronization with the replica, as determined by the
version numbers.
- Analysis of changes – Each performed change is
analysed, in order to find e-government services that have
to be updated. We distinguish between the addition and the
deletion of an entity from the included ontology. Removals
can be resolved directly by applying the consistency
preservation mechanism (see next section), since it ensures
the consistency by generating additional changes. For
example, the removal of a role from the Organisation
ontology causes the removal of all annotations of activities
made using this role or all instantiations of this role.
On the other hand, the addition requires an additional effort
that depends on the structure of the included ontologies.
Here we describe how this problem is resolved in the e-
government domain by considering the Legal ontology. We
analyse the addition of a new amendment. The goal is to
find services that realize the law related to this amendment,
and to order them in an appropriate way. Since each
activity is referred to a law/chapter/paragraph/article, the
corresponding activities can be easily found. In case there
are several services referring to the given law (e.g. through
a paragraph or an amendment), they are ranked according
to the semantic similarity that is based on calculating the
distance between two entities in the hierarchy.
- Making recommendation: In order to make
recommendations how to adapt the service description we
use the Lifecycle ontology. Since it is a description of the
service design process, which clarifies which design
decisions were taken for which reasons, it proves to be
valuable for further development and maintenance.
Let’s consider an example. A change in the Organizational
ontology could be the split of the organizational unit into
two sub-units. This “organizational reason” might cause the
design decision “Executing an activity in two steps”, i.e.

two (atomic) activities. For example, the decision to split
the activity “CheckEligibility” shown in Figure 8 into two
activities can be caused by the fact that two different public
authorities are responsible for this action: the residents’
registration verifies personal information and the
“immigration office” verifies the validity of the visa, in
case the citizen is foreigner.

Change preservation

In this section, we present a novel approach to the
consistency preservation that supports the public
administrators in managing and optimizing the service
descriptions according to their needs. The underlying
system is able to find the “weak places” in the description
of the e-government services (e.g. unreachable entities,
non-expected data, etc.) by considering the semantics of the
underlying OntoGov model.
The proposed approach incorporates mechanisms for
verifying the service description with respect to different
consistency criteria as well as mechanisms enabling us to
take actions to optimize it. It has been realized through two
sub-tasks:
- Verification: It is responsible for checking the

consistency of a service description. Its goal is to find
”parts” in the description that do not meet consistency
conditions;

- Evolution: It is responsible for ensuring the
consistency of the service description by generating
additional changes that resolve detected
inconsistencies.

In the rest of this section we describe our approach for
inconsistency detection. Thereafter, we present our
approach for “moving” the inconsistent ontology back into
a consistent state, i.e. change generation.

Verification

In this section we explore the verification of the OntoGov
model, which means checking of the correctness of the
service description with the respect to the service
consistency definition. Moreover, it provides enough
information to analyze the sources of conflicts. Its role will
be to inform a public administrator about the necessity for
updating the description of an e-government service, and to
allow the application of the service changes, enabling an
easy spotting of potential problems.
The description of the e-government services (or more
generally the description of the semantic web services) can
be arbitrary complex, containing multiple concurrent
threads that may interact in unexpected way (Ankolekar, et
al., 2005). We propose an approach that is able to verify
numerous properties. The set of properties is not
predefined, which means that it does not include only the
standard properties such as safety, liveness, etc.
(Naumovich, G., Clarke, L., 2000), but more important it
can be easily extended by the application specific
properties.

Verification of description of e-government services is
realized using formal methods. These methods seek to
establish a logical proof that a system works correctly. A
formal approach provides:
- a modeling language to describe the system;
- a specification language to describe the correctness
requirements; and
- an analysis technique to verify that the system meets its
specification.
The model describes the possible behaviors of the system,
and the specification describes the desired behaviors of the
system. The statement the model P satisfies the
specification α is now a logical statement, to be proved or
disproved using the analysis technique.
Since the goal of the inconsistency detection is to check
whether a service description satisfies the required
specification, it can be treated as a formal verification
problem in which: (1) a modelling language used to
describe a system is defined through the OntoGov model,
(2) a specification language corresponds to the consistency
constraints that must be preserved and an analysis
technique can be treated as inference process. Whereas the
model of the e-government services is described in section
OntoGov Model, the consistency is defined in (Stojanovic,
et al., 2006). In the rest of this section we focus on (3).
Formal verification methods can be roughly classified as:
- Proof-theoretic: a suitable deductive system is used, and
correctness proofs are built using a theorem prover, and
- Model-theoretic: a model of the run-time behaviour of
the system is built, and this model is checked for the
required properties.
In this section we explore the verification of the OntoGov
model using proof-theoretic method. Once we have a
service description plus the formally defined consistency
constraints that correspond to the users’ requirements, we
can automatically check whether these constrains are
satisfied in the service description with the help of the
reasoning. The KAON29 inference engine is used, since it
implements the proof-theory for DL and DL-safe rules. By
performing an efficient exploration of the possible
inconsistencies that can be built in the service description,
the system is able to verify all the consistency constraints10
defined for the OntoGov model. One example of these
constraints is given in Figure 10.
The set of the consistency constraints as well as a
description of the concrete service are inputs to the
KAON2 inference engine that is used to automatically
verify whether the service description satisfies the
consistency. Practically, a query is sent, since possible
problems are hierarchically organized. A trace of the
answer to a query is considered as a model that reflects
how different pieces of a service description are put
together to generate the answer. If the KAON2 verifies that
the consistency constrains are fulfilled (i.e. there is no

9 http://kaon2.semanticweb.org
10 Since in this work we use the KAON2 inference engine, the
consistency constraints must be specified as DL-safe rules.

answer), then the service description is consistent.
Otherwise, the KAON2 provides explanation about causes
of problems, since it can identify the conditions under
which the problem occurs.

A

D

C

B

ErrorReachable(X) ←←←←

¬¬¬¬ isReachable(X)

isReachable(Y) ←←←←

isReachable(X) ∧∧∧∧

hasNext(X,Y)

isReachable(Y) ←←←←

hasFirstService(X,Y)
Figure 10. Verification based on the constraints. A part of
consistency rules is depicted in the left part. The right part
shows the process model that does not satisfies the rules

The realised verification procedure is depicted in Figure
11. The set of the consistency constraints selected/defined11
by the public administrator are transformed into a set of
DL-safe rules and these rules are included in the temporary
version of the OntoGov Profile and OntoGov Process
ontology, respectively. Since the description of a concrete
service includes both of these ontologies, it will include the
rules to be checked. The service description is given to the
KAON2 reasoner and the query “about all possible errors”
is initiated. The result produced by KAON2 reasoner is
then presented to the public administrator in the form that
he/she can understand. Even though logic provides an
unambiguous formal specification, it is hard to imagine that
a public administrator will comprehend it. Therefore,
“wrapping” into a more friendly formalisms, i.e. natural
language explanation12 has been proposed. It means that in
the case of any violations of consistency constraints, the
reasoner will output a counterexample, which demonstrates
the courses of wrong behaviour. An analysis of this
counterexample provides information that helps to correct
and refine the service description.
For example, a precondition of an activity is not achieved
because there are some previous activities that undo the
precondition. Let’s consider the driving licence service for
foreigners in Germany. The preconditions of the
Application activity includes that foreigners come from
non-EU countries. Since the special verification is required
for the countries emerged from the break-up of Yugoslavia,
there is an activity in the process model that has a
precondition that the foreigners must be from Slovenia.
However, the Application activity undoes this precondition,
since Slovenia is a member of EU. It is very difficult for a
user to notice that some of the paths in the model are not be
possible due to at least two reasons: (i) this service
description is very complicated with many disjunctive
branches, and (ii) the background knowledge (i.e. the fact

11 A user can select consistency criteria from the list of available
consistency constraints and/or can define a new consistency criterion.
12 We do not use logical notations since public administrators do not have
logic background knowledge. For each possible problem, an explanation
in natural language is generated.

that Slovenia is in EU) is needed. Our system is able to
detect this problem by applying reasoning methods (i.e.
there is a corresponding consistency constraint13) and to
help the user fix problem. It can find activities in the
process model that should be executed before the failed
activity that have effects that undid the unachieved
preconditions. Moreover, it suggests modifying the activity
whose precondition can never be achieved. For the above
mentioned type of failure, our system suggests (i) changing
or adding constraints for the Application activity and (ii)
deleting or modifying the Verification activity.
Moreover, the system is also able to propose changing
ordering constraints among the activities. For example, the
user may either forget to specify connections between the
activities or may specify wrong connections. These
problems may be detected by checking a particular
consistency constraint14 that defines the certain ordering
constraints already specified for the type of these activities.
During the verification, the system checks (among others)
the dependencies between activities using the ordering
consistency constraint. In the case that some activity does
not satisfy the ordering constraint, the system produces the
error message containing the fixes such as adding or
modifying dependency between activities.
We note that the same problem can be a consequence of
different inconsistencies in the model, since one
abnormality can lead to another. For example, missing the
first activity in a model causes unreachable activities. To
help avoid confusion, our system can selectively present
suggestions for improvement by focusing the user on the
actual cause of a problem. For the previous example, the
system suggests starting with the resolution of the first
activity problem. However, the user can check other
problems as well, in the case that he/she what to do that.
For the description of e-government services the proposed
solution seems to be an ideal technique, since only
consistency constraints defined by the public administrators
need to be considered. The probability of running into the
undecidable solution is quite low, since the restriction to
the DL-subset of SWRL rules has been chosen to make
reasoning decidable. Moreover, reasoning in KAON2 is
implemented by novel algorithms that allow applying well-
known deductive database techniques, such as magic sets,
to DL reasoning. According to the performance evaluation
(Motik, Sattler, 2005), such algorithms make answering
queries in KAON2 one or more orders of magnitude faster
than in existing systems.

13 If an activity precedes another activity, then its preconditions have to
subsume the preconditions of the next one.
14 Any specialisation of the activity A1 must always be a predecessor of
any specialisation of the activity A2, where A1 and A2 are two activities
defined in the OntoGov model and their order is given in advance.

Yes

No

Formal verification:
Check that model satisfies specification

Model is verified.
There is no problems

Natural language
explanation about
founded problems

Does the
analysis prove
the correctness

claim?

Correctness requirements

written in a specification
language

A formal description of

an e-government service

Inference engine

Figure 11. Formal verification: Based on the possible behaviours (i.e. a ontology-based service description) and on the

desirable behaviours (i.e. formally defined consistency constraints) the system constructs a proof that either proves or
disproves the correctness claim

In this work we applied the formal techniques based on the
sound and complete set of consistency rules (provided with
an inference mechanism) to verify the models. The
informal approaches, such as the procedural approach,
whose semantics is given by a procedural mechanism that
is capable of providing answer to wide class of consistency
problems, can be applied as well. However, the
extensibility of the procedural approach is time-consuming
and error-prone, since knowledge about consistency is
represented by means of an ad hoc structure. Alternative
approaches cover testing, which executes the actual model
on selected inputs or simulation, which simulates a model
on selected inputs (not exhaustive), cannot be applied,
since they perform the so-called dynamic checks. On the
contrary, our approach performs static checks by posting
questions about various features of the service description.

Evolution

Changes are applied to a consistent service description, and
after all the changes are performed, the description must
remain consistent. This is done by finding inconsistencies
in the description and completing required changes with
additional changes, which guarantee the transfer of the
initial consistent description into another consistent state.
Indeed, the updated service description is not defined
directly by applying a requested change. Instead, it is
indirectly characterized as a service description that
satisfies the user’s requirement for a change and it is at the
same time a consistent e-government service description.
Therefore, there are two major issues involved in the
change generation. The first issue is the understanding how
an ontology-based service description can be changed since
the change management is realized by means of applying
changes. To resolve the first issue a possible set of changes
is defined in (Stojanovic, at al., 2006). The second issue
involves deciding when and how to modify a service
description to keep its consistency, which is elaborated in
(Stojanovic, 2006). It is based on the formal approach for
suggesting fixes that directly point to the source of the

errors. Indeed, each possible change is formally modelled.
The most critical part of a definition change is rules that
specify the side effects of a change on the other related
entities. To define the rules for each change, we started by
finding out the cause-effect relationship between the
changes. This kind of dependency between the changes
forms the so-called change dependency graph.
A sample screenshot of the OntoGov change management
system illustrating triggered actions (i.e. generated
changes) for the removal of the atomic activity is given in
Figure 12. In this scenario, the user requested to remove
the atomic activity B. According to the change dependency
graph, this change may cause:
� Remove all input links15 of AtomicActivity B;
� Remove all output links of AtomicActivity B;
� Remove all metadata defined for AtomicActivity B

that includes:
• the attributes such as name, description, fist and

last service;
• the relations to the associated ontologies (i.e.

Legal, Organizational and Lifecycle ontology);
• the relations to the inputs and outputs defined

through the Domain ontology;
• the pre- and post-conditions.

Before changes are performed, their impact is reported to
the user (the right part of Figure 12). Presentation of
changes follows the progressive disclosure principle:
related changes are grouped together and organized in a
tree-like form. The user initially sees only the general
description of changes (cf. “Delete atomic service B” in
Figure 12). By opening a node in the tree, the user can see
what changes will actually be performed (cf. “Delete input
parameter CertificateInstanceName” in Figure 12). Hence,
the change information can be viewed at different levels of
granularity. If the user is interested in details, she can

15 A link can be a sequence or a relation to the split, join or switch control
construct.

expand the tree and view complete information. She may
cancel the operation before it is actually performed.

a) The initial model; b) the generated changes

Figure 12. Change generation for the request
RemoveAtomicActivity(B)

Implementation

OMS is the ontology management system that has been
developed within the OntoGov project. It is a management
system for the ontology-based description of the e-
government services. It is much more than a standard
framework for creating, modifying, querying, and storing
ontology-based description of e-government services. It
provides support for the service lifecycle management,
which includes service modelling; service reconfiguration,
service reuse, service discovery and service analysis.

Service Modeller Service Registry
Applications
& Services

Service API

Middleware

Data & Remote

Services Persistence, Security, Transaction

ConsistencyChange

KAON2 API

Inconsistency
Detection

Inconsistency
Detection

NotificationNotification

RegistrationRegistrationSynchronisationSynchronisation

DiscoveryDiscovery

Model

Change
Generation

Change
Generation

ApplicationApplication

VersioningVersioning

Basics module

Consistency
preservation

module

Change
implementation

module
LoggingLogging

Change
propagation

module

Registry
module

Documentation

Lifecycle
Lifecycle
module

Synchronisation

Figure 13. Conceptual architecture of the OMS

The simplified conceptual architecture of the OMS system
is presented in Figure 13. Roughly, the OMS components
can be divided into three layers:
- Applications and Services Layer realizes UI applications
and provides interfaces to non-human agents. It includes:
(i) Service Modeller – it is an editor for the semantic

description of the e-government services16; and (ii) Service
Registry – it is a registry of the e-government services.
- The Service API as part of the Middleware Layer is the
focal point of the OMS architecture. The bulk of
requirements related to the management of e-government
service description is realized in this layer;
- Data and Remote Services Layer provides data storage
facilities. It is based on KAON2 API, which is an API for
OWL ontologies.
The middleware layer of the OMS shown in Figure 13
emphasizes points of interest related to the change
management. The main modules are (i) basics module; (ii)
consistency preservation module; (iii) change
implementation module; (iv) change propagation module;
(v) lifecycle module and (vi) registry module. The
functionality as well as the implementation of these
modules is described in (Stojanovic, Apostolou, 2005). Our
initial evaluation shows that the OMS is able to find all
inconsistencies in the service description and to suggest
useful fixes including the fixes that directly point to the
source of the inconsistencies.

Related work

OWL-S process models are typically verified using human
inspection, simulation and testing. In this paper we
proposed the formal verification, which as opposed to
traditional techniques such as testing and simulation has
two main advantages (i) formality - the intuitive correctness
claim is made formally; and (ii) verification - the goal of
the analysis is to prove or disprove the correctness claim. It
is not adequate to check a representative sample of possible
behaviours as in simulation; rather a guarantee that all
behaviours satisfy the specification is required.
The verification of the OWL-S process model is described
in (Narayanan, McIlraith, 2002) and (Ankolekar, et al.,
2005). Whereas the first paper proposes a Petri Net-based
operational semantics, which models the control-flow of a
process model, the second paper additionally models the
data flow and applies the SPIN model-checker as a the
automatic verification tool. We extend these works in
several dimensions. First, we model not only the control-
flow and data flow consistency constraints. We allow to the
public administrators to specify arbitrary domain-
dependent consistency constraints. In this way we are able
to cover all perspectives of the business models, i.e. control
flow, data flow, operational issues (e.g. interactions
between systems) and resources (e.g. humans, machines
etc.). Second, we do not consider only the process model
but also the profile of a service. Finally, we have realized

16 OIModeller is used as an editor for the “standard” ontologies. It is a
graphical tool for ontology creation and maintenance. Since it is based on
the different ontology model, we have realized a translator of the KAON
ontologies (http://kaon.semanticweb.org/) into the KAON2 ontologies
(http://kaon2.semanticweb.org/). We note that each KAON ontology can
be transformed into a KAON2 ontology without loss of information.

the verification of the e-government service descriptions
using rule-based inference process.
Many AI researchers have investigated useful ways of
verifying and validating knowledge bases for ontologies
and rules. However, it is not easy to directly apply them to
checking process models. In (Kim, Gil, 2001)] the authors
discussed the KANAL system that relates pieces of
information in process models among themselves and to the
existing knowledge base, analyzing how different pieces of
input are put together to achieve some effect. It builds
interdependency models from this analysis and uses them
to find errors and propose fixes. However, it does not allow
the user to specify their specific conditions, event though
the predefined set of constraints doesn’t cover all the users’
needs. Our approach allows the user to define the user-
defined conditions. Moreover, it separates the specification
of consistency from the realization of the change
preservation procedure. Finally, the inconsistency detection
and the change generation procedures are governed by
well-defined formal models that are fully automated.
Therefore, the approach is accessible by public
administrators who are not experts in formal methods.
There are many graphical tools (ARIS, Adonis, to name
just a few) that lay out a process model and draw
connections among steps. These tools lack formal methods
for verifying properties of processes. Indeed, they tools are
limited to simple checks on process models, since there is
no semantics associated to the individual steps. In contrast,
we propose an approach that allows to the users to formally
specify consistency constraints. Ontologies and rules are
used to represent this kind of background knowledge or
user’s needs. With this context, our system is much more
helpful in checking the process model. Moreover, our
system can check the service profile as well and it proposes
suggestions for resolving the problems.

Conclusion

e-government systems are subject to a continual change.
The importance of better change management is nowadays
more important due to the evolution of Europe towards a
multicultural, more open and international society with
changing common values, increasing levels of education,
demographic involvement and adoption of new
technologies. It is especially true for the new EU countries,
since the European integration has paved the way for new
legislation, regulations and corresponding changes that
affect the way public administrations in the enlarge Europe
are organized and operate.
It is clear that ad hoc management of changes in
eGovernment might work only for particular cases. In order
to avoid drawbacks in the long run, the change
management must be treated in a more systematic way. In
this paper we presented an approach for ontology-based
change management. Our approach goes beyond a standard
change management process; rather it is a continual
improvement process. The novelty of the approach lies in
the formal verification of the service description as well as

in the using of formal methods for achieving consistency
when a problem is discovered.

Acknowledgement

The research presented in this paper was partially funded
by the EC in the project “IST PROJECT 507237 -
OntoGov”.

References

Ankolekar, A., et al., 2005, Towards a Formal Verification
of OWL-S Process Models, in Proc. of the ISWC 2005,
Galway, Ireland, LNCS 3729, pp. 37-51
Hardless, C., et al., 2000, The evolution of knowledge
management system need to be managed, Journal of
Knowledge Management Practice, Volume 3
Haase, P., Stojanovic, L., 2005, Consistent Evolution of
OWL Ontologies, in Proc. of ESWC 2005, LNCS 3532,
Greece, pp. 182-197
Kim, J., Gil, Y., 2001, Knowledge Analysis on Process
Models, in Proc. of the IJCAI 2001, USA, pp. 935-942
Motik, B., Sattler, U., 2005, Practical DL Reasoning over
Large ABoxes with KAON2,
http://www.fzi.de/KCMS/kcms_file.php?action=link&id=580

Narayanan, S., McIlraith, S., 2002, Simulation,
Verification and automated composition of web services, In
Proc. of the 11th WWW Conference, USA, pp. 77 – 88
Naumovich, G., Clarke, L., 2000, Classifying properties, an
alternative to the safety-liveness classification, ACM
SIGSOFT Software Engineering Notes, Vol. 25, Num. 6,
pp. 159-168
Nickols, F., 2003, Change management 101: A primer,
http://home.att.net/~nickols/change.htm
Stojanovic, L., et al., 2006, Change Management in e-
government: OntoGov Case Study, in Electronic
Government: International Journal, Special Issue on
Exploiting Knowledge Management for Ubiquitous E-
Government in the Semantic Web Era, Vol.3, No 1
Stojanovic, L., 2006, Ontology-based Change
Management: e-government case study, to appear in a book
about Semantic Web Services
Stojanovic, L., Apostolou, D., 2005, Ontology-based
Change Management of e-government services, in Proc. of
WI2005 Conference - "Semantics and Orchestration of
eGovernment Processes" Workshop, France
Stojanovic, L., 2004., Methods and Tools for Ontology
Evolution, PhD thesis, University of Karlsruhe
Stojanovic, N., Stojanovic, L., 2005, A Change-Aware
Framework for the Knowledge Management in
eGovernment, in K. V. Andersen, Å Grönlund, R.
Traunmüller, M. Wimmer (Eds.): Electronic Government -
Workshop and Poster Proceedings of the Fourth
International EGOV Conference 2005, Denmark, ISBN 3-
85487-830-3, pp. 3-10

