
Ubiquitous Web Services for E-Government Social Services

Athman Bouguettaya, Denis Gracanin, Qi Yu, Xiaoyu Zhang, Xumin Liu, Zaki Malik
Department of Computer Science

Virginia Tech
{athman,gracanin,qyu,zhangxy,xuminl,zaki}@vt.edu

Introduction

The Semantic Web is defined as an extension of the ex-
isting Web, in which information is given a well-defined
meaning (Berners-Lee, Hendler, & Lassila 2001). The ulti-
mate goal of the envisioned Semantic Web is to transform
the Web into a medium through which data and applica-
tions can be automatically understood and processed. The
development of technologies for supporting the Semantic
Web has been the priority of various research communities
(e.g., database, artificial intelligence). A major component
in enabling the Semantic Web is the concept of Web ser-
vices (Alonso et al. 2003; McIlraith, Son, & Zeng 2001;
Medjahed et al. 2003). A Web service is a set of related func-
tionalities that can be programmatically accessed through
the Web. Examples of Web services span several applica-
tion domains including e-government (e.g., welfare social
service) and B2B E-commerce (e.g., stock trading). Web ser-
vices are gradually taking root because of the convergence
of business and government efforts to making the Web the
place of choice for all types of activities. The maturity of
XML-based Web service technologies such as SOAP, UDDI,
and WSDL is a prominent factor contributing to the large
adoption of Web services in the near future (Curbera et al.
2002).

Web services have spurred an intense activity in industry
and academia to address challenging research issues such
as the automatic composition, optimized querying, and cus-
tomized presentation of Web services. Service composition
includes the automatic selection and interoperation of in-
dividual Web services to provide value-added and person-
alized composite services. Optimized service query offers
complex and optimized query facilities for combining ac-
cesses to diverse service providers. The customized ser-
vice presentation presents interfaces based on the service in-
put/output data and service semantics. The diversity of these
issues calls for the design and development of a compre-
hensive Web Service Management System (WSMS), where
Web services would be treated as first-class objects that can
be manipulated as if they were pieces of data. A WSMS
includes the architectural components that introduce more
convenience, flexibility, and effectiveness in managing Web

Copyright c© 2005, American Association for Artificial Intelli-
gence (www.aaai.org). All rights reserved.

services. In this paper, we present a comprehensive WSMS
for e-government called WebSenior. Web Services are used
ubiquitously across all the layers of the system. WebSenior
helps senior citizens and their helpers use the Web to request
and receive e-government services.

WebSenior: A WSMS for e-Government
WebSenior is a WSMS for digital government. It provides a
framework for efficiently accessing e-government services.
Its main contributions revolve around three features, in-
cluding composing e-government services, optimized query-
ing of e-government services, and customized user inter-
face based on Web services. In this section, we provide an
overview of these features.

Composing E-government Services

We organize Web services into communities. Communi-
ties provide a means for an ontological organization of the
available service space based on categories. All services
that have similar categories belong to the same community.
Providers identify the community of interest and register
their services with it. Services can leave and reenter a com-
munity at any time during their life-span. During the regis-
tration process, providers must define the mappings between
generic operations defined in their community and those de-
fined in their service. A service may offer all or some of the
operations defined within a community. For each generic
operation, it may use all operation’s parameters, a subset of
those parameters, and/or add new parameters.

We propose a novel approach for the automatic composi-
tion of Web services. This approach consists of four concep-
tually separate phases: specification, matchmaking, selec-
tion, and generation. The specification phase enables high
level descriptions of the desired compositions. The match-
making phase automatically generates composition plans
that conform to the composers’ specifications. The match-
making algorithm uses as input, the composer’s specification
and a repository (e.g., UDDI) of pre-existing service inter-
faces described in WSDL language (extended with semantic
constructs). Composers select a generated plan (selection
phase) based on Quality of Composition (QoC) parameters
(e.g., ranking, cost). Using the selected plan, a detailed de-
scription of the composite service is automatically generated

(generation phase). This description includes the list of out-
sourced services, mappings between the composite and ous-
tourced services operations and messages, and the control
flow of outsourced operations. The control flow refers to the
execution order of the operations outsourced by the compos-
ite service.

We describe a composability model to check whether Web
services can be combined together in the match making al-
gorithm (Medjahed & Bouguettaya 2005). Composability
is checked through a set of rules organized into four lev-
els: syntactic, static semantic, dynamic semantic, and qual-
itative. These four levels check composability of service
messages and operations; each rule in a given level com-
pares a specific pair of attributes of interacting Web ser-
vices. Each composability rule specifies the constraints and
requirements for checking horizontal, vertical, and hybrid
composability. A Horizontal composition models a “supply
chain”-like combination of operations. A Vertical Composi-
tion models the “subcontracting” of an operation by another
operation. A composite service may also include operations
that are horizontally composed and others that are vertically
composed. We refer to this type of composition as hybrid
composition.

Web Service Optimization
We adopt the declarative paradigm of querying services
based on the popular relation concept in Relational Database
Management System (Ouzzani & Bouguettaya 2004). Users
submit conjunctive queries over relations in the following
form:

Q(X) : −
∧

i

Ri(Xi),
∧

k

Ck

where Ri are relations from the query level. X and Xi are
tuples of variables. Ck’s represent conditions on variables
appearing in the query. Their form is: Ck = x op c, where
x is an input or output variable appearing in any Xi, c is a
constant, and op ∈ {=, 6=, <, >,≥,≤}.

A query is resolved via a three level query model to one
or multiple service execution plans. The multiple service
execution plans are equivalent in terms of their final output,
but they may differ according to different parameters, such
as response time, resource use, reliability and so on. These
differences can be several orders of magnitude large and thus
require a service-centric query optimization strategy.

Generation of Service Execution Plans A Service execu-
tion plan basically defines a sequence of sets of operations.
It can be generated by a three-level query resolution model.
The three-level query model consists of:
• Query Level – Consists of a set of relations that allow

users to formulate and submit declarative queries directed
to Web services. Different sets of relations may be de-
fined over the virtual operations using different mapping
rules.

• Virtual Level – Consists of Web service-like operations
typically offered in a particular community. For any rela-
tion Ri ∈ R,

Ri(x1, x2, ..., xn) : −
∧

j

V opj(yj1 , ..., yjm
)

where xi are the attributes of Ri, V opj ∈ VOP where
VOP is the set of virtual operations, and yji

are input
and output variables of the corresponding operation. This
definition means that to get Ri’s tuples, we need to invoke
the different virtual operations V opj .

• Concrete Level – Represents the space of Web services
offered on the Web. These are the potential candidates
to answer queries. Concrete Web services are a priori
unknown. They need to be discovered and matched to the
virtual operations appearing in a query.

A user query is first mapped into a virtual set of opera-
tions. If this set of operations can be serviced by a single
Web service, the query processor will consult the service lo-
cator to find the “best” concrete Web service. The “best”
concrete Web service in this case is computed based on a
predefined objective function. An equivalent scalar value is
generated using weighted vector values. The weights de-
fine the relative importance of the key criteria. If the set
of virtual operations can be serviced by a combination of
two or more services, the request is forwarded to the ser-
vice composer. The service composer generates the set of all
potentially composable services based on the composability
model. These composite services and their service execu-
tion plans will be returned to the query processor which will
in turn forward those plans to the Quality of Web Service
global plan optimizer to select the best service execution
plan.

Web Service Presentation
Semantic Web facilitates the automatic data processing be-
tween applications. However, the data processed in the Se-
mantic Web is usually not presented in a user friendly way.
When users need to interact with services on the Semantic
Web, how to automatically provide friendly user interfaces
is a challenge. We propose to use a set of user interface
Web Services to automatically create user interfaces based
on user preferences. The automatically generated user inter-
faces contain the related service functionality.

In order to facilitate the dynamic generation of the user
interfaces, we compose a user interface from different com-
ponents. These components can host the service description
or provide the Web navigation functionality. All of them are
hosted and organized by a user interface container applica-
tion. Generation of the user interfaces is the result of the
interactions between the container and the following groups
of user interface Web services:

Service User Interface Web Service: This type of service
provides a user interface component for a specified Web ser-
vice so that users can access and operate on that service. Af-
ter accepting the user interactions dispatched from the con-
tainer, it invokes the corresponding services. When the in-
vocation is completed, it formats the result data into a well
organized user interface component and then transfer it to
the container.

User Interface Component Web Service: This type of
service acts as a user interface repository. It serves user in-
terface components for container applications. One example

��������	

�	
�	�

����

�������

��	���

���

�����	�������	

�������

��	���

����

�������

�	�����

����������

��	�
���	�

���������

 	������

!�	����

"�����

#�����

�������

��	���

"�����

$������

�%% �"���

"&���"���
"������'

%����������

"����	���(�"��)����"���

%����������

%����������

(�*�"�����	��"�������	
�	�

%���*����"����'

�����

�����	
���

�
�
��

��������

�
�
��

� ���

��������

�
�
�
���

%����������

�
���

��
�
�

�
�
�
�

��
�
�

��
�
�

��
���� ��
����

���������

��
����

"�����

&	����
���
"�����

&	����
���

"�����

&	����
���
"�����

&	����
���

%���*����"����+

"������+

"������,

"������- "������.

"������/ "������	

&	����
�

��	�
�

Figure 1: Proposed Web Service Architecture

of such a Web Service can provide a Web calendar script as
an HTML script component. The calendar can be embedded
into a Web user interface container.

User Interface Adaptation Web Service : This type of
service provides instructions or templates for creating ac-
cessible user interfaces. The templates are based on the in-
formation of the user and the available components of the
user interface that are to be generated. User information is
gathered from the user interface container application based
on a user modeling method. The returned result from the
service is based on the user’s model and the content of the
user interface. For example, an accessibility user interface
adaption Web Service will generate a template that provides
contrast background and text for senior citizens with visual
impairment.

Implementation
The system’s architecture (Figure 1) is organized into five
tiers: databases, services, service ontologies, service man-
agement, and user interface manager. The database tier con-
sists of the databases that store the data used by the different
applications. The service tier contains basic Web services.
The service ontologies tier organizes services based on their
domain of interests. The service management tier has four
major components: (i) the service locator, (ii) the service
composer, (iii) the ontology manager, and (iv) the execution
engine. When a request for a service is received, the service
locator interacts with the UDDI registry and discovers rele-
vant services. If the request cannot be satisfied by a single
service, the service composition module is invoked. The ser-
vice composer interacts with the ontology manager to gen-
erate an optimized composite service that satisfies the user’s
request. The execution engine performs the final service ex-
ecution. The request monitor traces the unsatisfied requests
for managerial purposes. The user interface manager is to
authenticate users, record and analyze their behavior, and
provide the interface to interact with services. Once the user
is identified, the system’s adaptive user interface (UAI), will

dynamically adapts to their needs, abilities, and computer
skills. There are six components in this tier: adaptive user
interface generator, user authentication, user behavior moni-
tor, user behavior analyzer, request handler, and user profile
management.

Conclusion
This paper describes a comprehensive WSMS, called, Web-
Senior. Web services are used across all system levels to
efficiently deliver e-government social services. In this re-
spect, the key feature of the system is the ubiquity of Web
services: (1) they are used to model the functionality of the
applications (i.e., social services for senior citizens), and (2)
as a key technology for building the system itself. WebSe-
nior enables the automatic composition, optimized querying,
and customized presentation of Web services.

References
Alonso, G.; Casati, F.; Kuno, H.; and Machiraju, V. 2003.
Web Services: Concepts, Architecture, and Applications.
Springer Verlag (ISBN: 3540440089).
Berners-Lee, T.; Hendler, J.; and Lassila, O. 2001. The
Semantic Web. Scientific American.
Curbera, F.; Duftler, M.; Khalaf, R.; and Nagy, W. 2002.
Unraveling the Web Services Web. IEEE Internet Comput-
ing 6(2).
McIlraith, S. A.; Son, T. C.; and Zeng, H. 2001. Semantic
Web Services. IEEE Intelligent Systems 16(2).
Medjahed, B., and Bouguettaya, A. 2005. A Multilevel
Composability Model for Semantic Web Services. IEEE
Transactions on Knowledge and Data Engineering 17(7).
Medjahed, B.; Benatallah, B.; Bouguettaya, A.; Ngu, A.;
and Elmagarmid, A. 2003. Business-to-Business Interac-
tions: Issues and Enabling Technologies. The VLDB Jour-
nal 12(1):59–85.
Ouzzani, M., and Bouguettaya, A. 2004. Efficient Access
to Web Services. IEEE Internet Computing 8(2).

